L., Vens, C., Struyf, J., Blockeel, H., Kocev, D. and Džeroski, S. (2010).
dicting gene function using hierarchical multi-label decision tree ensembles,
MC Bioinformatics, 11, pp. 2.
er, J. (2015). Deep learning in neural networks: an overview, Neural Networks,
pp. 85–117.
. G., Rangan, S., Blades, M. W., Piret, J. M. and Turner, R. F. B. (2019).
oothing Raman spectra with contiguous single-channel fitting of Voigt
ributions: an automated, high-quality procedure, Applied Spectroscopy, 73, pp.
–58.
G. E. (1978). Estimating the dimension of a model, Annals of Statistics, 6, pp.
–464.
H. (1974). On the theory and computation of evolutionary distances, SIAM
rnal on Applied Mathematics, 26, pp. 787–793.
e, P. Dalby, A. and Yang, Z. R. (2005). Predicting the phosphorylation sites
ng hidden Markov models and machine learning methods, Journal of Chemical
ormation and Modeling, 45, pp. 1147 – 1152.
M., Bodrud-Doza, M,. Islam, A. R. M. T. and Rahman, M. M. (2020). Strategic
essment of COVID-19 pandemic in Bangladesh: comparative lockdown
nario analysis, public perception, and management for sustainability,
vironment Development and Sustainability, 18, pp. 1–44.
C. E. (1948). A mathematical theory of communication, Bell System Technical
rnal, 27, pp. 379–423.
G. and Haralick, R. M. (1982). Organization of relational models for scene
lysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 4, pp.
–602.
v, M., Vucetic, S. and Dunbrack, R. L. Jr. (2019). A new clustering and
menclature for beta turns derived from high-resolution protein structures, PLoS
mputational Biology, 15, pp. e1006844.
M., Nussinov, R. and Wolfson, H. J. (2008). Algorithms for multiple protein
ucture alignment and structure-derived multiple sequence alignment, Methods
Molecular Biology, 413, pp. 125–146.
Margolies, L. R., Rothstein, J. H., Fluder, E., McBride, R. and Sieh, W. (2019).
ep learning to improve breast cancer detection on screening mammography,
entific Reports, 9, pp. 12495.
R., Arabatti, N., Carlquist, M, and Jörnvall, H. (1984). Characterization of a
ypeptide from human seminal plasma with inhibin (inhibition of FSH
retion)-like activity, FEBS Letters, 165, pp. 11–15.
e, K.E., Wahba, G. (2009). Detecting disease-causing genes by LASSO-Pattern
rch algorithm, BMC Proceedings, Suppl 1, pp. S60.
, T., Imoto, S., Yamaguchi, R. and Miyano, S. (2007). Weighted lasso in
phical Gaussian modeling for large gene network estimation based on
roarray data, Genome Informatics, 19, pp. 142–153.